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A theroetical analysis is given for potential flow over, around and under a vehicle 
of general shape moving close to a plane ground surface. Solutions are given 
both in the form of a small-gap asymptotic expansion and a direct numerical com- 
putation, with close agreement between the two for two-dimensional flows with 
and without circulation. Some results for three-dimensional bodies are discussed. 

1. Introduction 
In  this paper we consider steady irrotational flow of an inviscid incompressible 

fluid over, around and (especially) under a body of general shape situated close 
to a plane surface. The aim is to model some aspects of the aerodynamics of a 
vehicle moving over the ground with a very small clearance. Classical theoretical 
work on such ground effects (e.g. Milne-Thomson 1960, p. 506) requires clear- 
ances which are large compared with typical body dimensions. 

The present analysis had its origins in investigations of ship and submarine 
hydrodynamics. For instance, Havelock (1939), Tuck (1966) and Tuck & 
Taylor (1970) have considered the so-called ‘sinkage’problem for ships, in which 
to a certain degree of approximation one represents the free surface by a fixed 
plane and then computes vertical forces. These are, of course, situations of zero 
clearance. Newman (1965) solved the problem of a slender body of revolution 
moving close to a plane boundary, the clearance considered being of the same 
order of magnitude as the body width, and computed the force attracting the 
body towards the wall. 

Shallow-water ship hydrodynamic problems in which flow takes place through 
a small gap between the ship’s bottom and the sea floor were considered by 
Newman (1970), Tuck & Taylor (1970) and Taylor (1971). The concept of a 
local highly constrained flow through the gap matching an outer flow was also 
discussed by Widnall & Barrows (1970) for wing-like ground vehicles. 

We approach the problem here from two different points of view. In  the first 
place we present a small-gap theory, in which the solution is obtained formally 
(as in the work of Widnall & Barrows 1970) in the form of an asymptotic ex- 
pansion with respect to the small parameter E = gap sizeltypical body dimension. 
We develop this expansion in detail for a semicircular cylindrical vehicle and 
indicate how it can be generalized to an arbitrary body. 

The second approach is a purely numerical treatment of the two-dimensional 
case in the manner of Giesing & Smith (1967). We now assume that the gap size 
is comparable with but not necessarily smaller than the body dimensions, and 
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the accuracy of the results is limited only by the fineness of the mesh of points 
into which we divide the body profile. The resulting program is used to verify 
the small-gap theory for the semicircular case and, in addition, to provide flow 
computations for an automobile profile. 

In the two-dimensional case an inevitable consequence of the assumption that 
the body is of general (non-wing-like) form is that we must be content with a 
non-unique solution within irrotational theory. That is, we lack a trailing-edge 
condition such as the Kutta condition which, in classical aerodynamics, pre- 
scribes for us the circulation around the body. 

In fact we present here, both by small-gap asymptotic analysis and by 
numerical computation, the most general solution for this type of two-dimensional 
flow, namely a linear combination of a streaming flow without circulation and a 
flow due solely to a fictitious vortex located inside the body. 

The choice of the correct value of the circulation is very difficult to make 
without recourse to viscous fluid considerations and indeed one may have real 
doubts about the legitimacy of any inviscid approach to bluff-body aerodynamics. 
However, there is reason to believe that some progress can be made using the 
present approach and that the solution given can, for a suitable choice of the 
circulation, represent to a reasonable approximation the actual flow over and 
under a profile such as that of an automobile. 

The correct choice of the circulation is of course of critical importance if we 
are interested in the lift force on the vehicle. One point to realize, however, is 
that because of the presence of the ground plane this force is not necessarily zero 
when the circulation is zero. Indeed, it is not difficult to see that at zero circula- 
tion the net lift force is always downward, or toward the ground, because of the 
Venturi effect of flow through the gap. 

In  practice automobiles are more often than not subject to a positive (away 
from ground) lift force, indicating presence of circulation in such a direction as 
to slow down this under-vehicle flow. However, negative lift is not unheard of 
and is, for example, achievable by suitable design features (e.g. Marcel1 & 
Romberg 1970), so that one cannot dismiss the possibility of a zero or near to 
zero net circulation, which may be desirable from a number of points of view. 

Although two-dimensional flow would seem to be a reasonable approximation 
for the centre profiles of most conventional automobiles, this is clearly un- 
satisfactory near the sides of automobiles and for other vehicles such as trains. 
We show how the small-gap theory may, at least to leading order, be carried 
out easily for three-dimensional bodies of arbitrary shape. The results have been 
worked out in detail for bodies whose upper surface consists of half an ellipsoid 
or a slender body of revolution. 

2. Small-gap theory for circular cylinders 
We &st suppose that the vehicle is the nearly semicircular cylinder 

r =; (x2+y2)& < u, y > EU 

whose flat bottom surface y = eu is situated close to the ground plane y = 0, 
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i.e. e < 1, as in figure 1. The problem to be solved involves finding a velocity 
potential q5 which satisfies 

v2q4 = 0 (2.1) 

exterior to the vehicle, ++Ux as r + m ,  (2.2) 

aq4lar = 0 on r = a;, (2.3) 

aq5lay= 0 on y = 0 and y = e a ,  (2.4) 

and [$I = K ,  (2-5) 

where [ql] is the net change in q5 over any complete circuit surrounding the 
vehicle. The free-stream speed U and the circulation K are both supposed given. 
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EU 

FIGURE 1. Sketch of flow situation for semicircular vehicle. 

The asymptotic solution of the above boundary-value problem for small e 
can be obtained in a systematic manner by the method of matched asymptotic 
expansions (Van Dyke 1964). Only the barest outline of the required analysis 
will be presented here, reliance being placed on the intuitive nature of the inner 
and outer expansions. 

In  the first instance it is clear that as e -+ 0 the influence of the gap on the 
'outer' flow over the top of the semicircle disappears. That is, the 'zero-order' 
solution for q5 is nothing more than that for flow over the complete circle r = a, 
namely 

This is expected to be a good approximation everywhere except near and in the 
gap. Notice that this approximation does not yet take any account of the circula- 
tion K ,  as is inevitable from the fact that circulation can only be present if the 
gap is present. 

Since (2.6) is hardly satisfactory as a model of the flow with a gap present we 
must seek both an improved outer approximation and a different approximation 
which we can use in the gap itself, i.e. for y = O(ea). In the outer region we intro- 
duce a sink at  ( -a, 0 )  and a source at  (a, 0) ,  each of strength em, as a first-order 
correction to q50, modifying (2.6) to give 

q5 + Ux( 1 -t u2/rz) = q50. (2.6) 

where 

and 
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The approximation satisfies (Z.l), (2.2) and (2.3), and clearly models the draw- 
ing off of fluid at the leading edge and return at  the trailing edge. The source 
strength em is to be determined. In  the subsequent discussion we shall need the 
behaviour of near the edges, e.g. as (x, y) -+ (a, 0 ) ,  we have 

-+ (em/2n) log R + 2 Ua - (sm/2n) log 2a. (2.10) 

In  order to determine the magnitude of the source strength em we must look 
in detail at the flow near the edges. Figure 2 shows the flow near the trailing edge 

10 plane 

FIGURE 2. Flow in the trailing edge region, and its conformal 
mapping into the upper-half w plane. 

(a, 0) ,  indicating a stream V emerging from the middle part of the gap as a source. 
The appropriate stretched co-ordinates in a ' blown-up ' picture of the edge flow 
such as figure 2 are 5 = (x - a)/. and q = y/e, these quantities remaining bounded 
as e + 0. 

The flow problem in the trailing-edge region may be solved immediately by 
the conformal mapping 

(n/a)  [ = 2(U? + 1)i - 2 log ((w + 1)i + 1) + log w, (2.11) 

which maps the flow region in the 5 = f + i y  plane into the upper-half w plane, 
as indicated in figure 2. Clearly the appropriate solution in the w plane is a 
source at  w = 0 and we obtain 

Q, = (€:m/4n)log IWI +c, 

c == (sm/2n) log (e /n)  + 2 Ua. 

which matches (2.10) as w -+ 00 if 

(2.12) 

(2.13) 



Irrotdional $ow past bodies close to a plane surface 485 

The behaviour of the trailing-edge solution (2.12) in the gap region w -+ 0, 
i.e. (+) (;+ log w + 2 -log 2, is 

$+ (€m/4.lr)(fnja)5-2+2log2)+C 

= VZ-z$K, (2.14) 

where V = m/4a (2.15) 

and - 

(2.16) 

The significance of (2.14) is that it establishes the flow under the vehicle as 
that of a uniform stream V ,  where V and m are related by (2.15). The parameter 
m is itself determined from the circulation K by means of (2.16). That K as intro- 
duced in (2.14) is indeed the circulation prescribed by (2 .5)  is clear from the fact 
that our solution for $ is necessarily antisymmetric fore and aft. That is, the 
corresponding analysis for the leading edge would produce $ + V x  + +K instead 
of (%la), the jump in $ at x = 0 being therefore of magnitude K as required. 

Combining (2.15) and (2.16) we have finally that the flow velocity V under the 
gap is given by 2U -I- +a 

1 - (247~)  log (2s/ne) * 
V =  (2.17) 

The formula (2.17) is technically inconsistent as an asymptotic expansion with 
respect to 6 and can be written as 

v = 2U+K/2U+O(ElOg€), (2.18) 

in which,the O(e1oge) contribution can be obtained by expanding the de- 
nominator of (2.17). The error in (2.17) is at most O(e210gzs). 

The zero-order result (2.18) is of some interest, indicating as it does that in 
the absence of circulation ( K  = 0 )  the gap velocity is V = 2U,  twice the stream 
velocity and the same as the maximum velocity of slip at  the top of the vehicle. 
On the other hand, in the absence of a stream ( U  = 0 )  the velocity V = ~ / 2 a  
due to circulation alone is precisely the value needed to generate all the circula- 
tion K from the base 2a; thus circulation produces vanishingly small velocity 
components over the upper surface of the body. We also observe that clockwise 
circulation of amount K = -4Ua produces zero net flow (V  = 0)  through the 
gap. This is the value of K we should obtain by use of a Kutta condition at the 
edges, leading to stagnation conditions there and hence, necessarily, stagnation 
conditions throughout the gap. 

The actual gap size parameter s affects the gap velocity V only through the 
slogs correction term to (2.18) and we can see from (2.17) that it has the effect 
of reducing the gap velocity. Thus a t  s = 0.05 we obtain a 13 % reduction and 
at  E = 0.02 a 7 %  reduction. As we shall see in the following section, formula 
(2.17) gives excellent agreement with ‘exact ’ computations. However, even the 
zero-order formula (2.18) is a reasonable estimate and we indicate in 5 4 how this 
zero-order result may be obtained for general body shapes. 
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It should be emphasized again that, although we have for the sake of brevity 
relied heavily upon intuitive arguments in this section, the asymptotic analysis 
can be and has been carried out using the formal apparatus of matched asymp- 
totic expansions. Such a careful expansion was used by Widnall & Barrows 
(1970) for the case of their wing-like bodies. 

3. Two-dimensional numerical solutions 
Several numerical techniques exist for solving Laplace's equation subject 

to Neumann-type boundary conditions for arbitrary boundary geometries. Of 
special note are the ' source-distribution integral equation ' techniques used by 
Hess & Smith (1964) for non-lifting bodies in three dimensions, by Giesing & 
Smith (1967) for two-dimensional lifting sections under a free surface, and by 
Frank (1967) for unsteady free-surface oscillations. Since these techniques are 
well known and the present case is very similar to that treated by Giesing & 
Smith (1967), we present here only the results of the computations. 

The input of the program consists of a set of co-ordinates defining the shape of 
the body in the form of an approximating polygon. The number, length and 
location of the segments are chosen intuitively and by trial and error in order to 
produce a sufficient density of segments at parts of the body where the flow is 
varying rapidly. It is very difficult to give a satisfactory apriori criterion for this 
choice or even to be sure of the accuracy achieved once the choice has been made. 
However, about 60 segments have been found to be satisfactory, yielding results 
which appear to have errors of not more than 1 %  where the flow is slowly 
varying and not more than 10 yo where rapid variations take place. These error 
estimates are by comparison with similar 40 and 80 segment data. The computer 
time required for 60 segments is 6 see (CDC 6400). 

The initial output of the program is the velocity u of slip along the body 
contour, or rather the components us, u,, of u due separately to the stream U and 
the circulation K .  That is, we write 

(3.1) 

where us is the slip velocity created by a stream of unit magnitude in the absence 
of circulation, whereas uy is the slip velocity created in the absence of a stream 
by a fictitious unit vortex inside the body. The parameter B, taken as the base 
length of the body, is included to make uv non-dimensional. 

Other outputs readily available are the pressure coefficients, defined via 
Bernoulli's equation by 

'U = V U s  f ( K / B )  Uv, 

where p m  is the free-stream pressure and 

(3.2) 

(3.3) 

(3.4) 

(3.5) 



Irrotational $ow past bodies close to a plane surface 487 

are pressure coefficients due respectively to the stream alone, to coupling be- 
tween stream and vortex and to the vortex alone. Finally we integrate each of 
the pressure coefficients with respect to z to obtain the upward lift force per 
unit span, namely 

L = *p U2B[CfS + ( K /  U S )  CfV + ( K /  UB)2 cy] .  (3.6) 

Note that in the absence of a ground plane, the Kuttdoukowski theorem de- 
mands that Cgs = Cgv = 0,  and that Cgv = - 2, whereas in the presence of the 
ground plane all three are non-zero. 
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FIGURE 3. Numerical computation of flow for a semicircular vehicle with a clearance of 
5 yo of its radius. Numbers outside contour are for slip velocity per unit stream velocity, 
numbers inside contour are for slip velocity per unit circulation. Only the forward half 
is shown. 

Figure 3 shows the numerical computations of uv and us for a nearly semi- 
circular body as in § 2,  with a gap ratio 6 = 0.05. The figures written on the outside 
of the contour are those for us and those'on the inside are those for uv. Note that 
the under-vehicle flow is nearly uniform and the value 1-77 for us agrees closely 
with the value 1.75 given by the small-gap result (2.17). Note also that the above- 
vehicle values of uv are very much smaller than the under-vehicle values, as is 
also expected from the small-gap theory. The above-vehicle values of us are well 
predicted by as in (2.7), including the location of the stagnation points. The 
accuracy of the overall numerical process does not seem to be significantly affected 
by the mild local singularity at  the right-angle corners. 
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In figure 4 we present similar computations of us and uy for an automobile- 
like profile. No attempt has been made to model the rough undersurface of an 
actual automobile or to model details such as radiator grilles or bumper bars. 
Note again the relative constancy of us and uy over this profile's flat bottom, 
but now with a smooth transition around the smooth 'edges' a t  front and rear 
towards stagnation points of us. Also, note again how small the values of uv 
over the top of the vehicle are relative to us there and to uy and us under the 
vehicle. 

7 r r r r ~ r r r r r r r r r  , r / f , , , , , , , / / / / f / , , , , , / , i f ~ f f , , / ,  , / f / f f , , f , , , , , f f f f , f f ,  

FIGURE 4. Numerical computation of two-dimensional flow for an automobile-like profile. 
Numbers outside contour are for dip velocity per unit stream velocity, numbers inside 
contour are for slip velocity per unit circulation. 

In  assessing the relevance of the results given in figure 4 to the real automobile 
situation this last property is of great significance. Of course we cannot maintain 
that the computed results have any significance a t  the extreme rear end of the 
vehicle, where separation and wake formation takes place. However, so long as 
the wake remains reasonably thin (as seems likely for a well-designed automobile, 
if not for a semicircle !) the main effect of this wake on the flow elsewhere will 
be in the determination of K.  But since the flow over the top of the vehicle is 
insensitive to K we may expect, that this flow is reasonably well predicted by us 
alone. Regrettably few wind-tunnel measurements on automobiles have 
appeared in the open literature; however, one may favourably compare figure 4 
qualitatively with pressure plots given by Morelli (1964)) Tctens (1966) or 
Potthoff (1969), using (3.3) to convert us to Cgs. 

On the other hand, the correct choice of K is clearly critical for the under- 
vehicle flow since the values of uy and us are comparable there. This means that 
more information about the value of K is needed before the under-vehicle flow 
can be determined by purely theoretical considerations. For example, we may 
consider that the rear stagnattion point of us in figure 4 is a little too high. In 
order to shift this stagnation point downward even a small amount we need a 
quite significant negative circulation K ,  which will choke off the under-vehicle 
flow and induce upward lift forces. This sensitivity to K implies sensitivity to 
small design changes. 

The lift coefficients for this particular vehicle are Cgs = - 0.2 1 ,  C T  = - 2.53 
and (2:'' = - 0.69. Thus at zero circulation we have a negative (downward) lift 
coefficient of - 0.21. As we introduce negative (clockwise) circulation the lift 
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first becomes positive (upward) at  K ~ U B  = - 0.08, a value which is not sufficient 
to depress the rear stagnation point to a noticeable extent in figure 4. The lift 
remains positive for - 3.58 < K/  U B  < - 0-08, a range which includes the value 
K ~ U B  = - 1-56 at which the under-vehicle flow is reduced to zero. 

In  general very little can be said about drag in an inviscid theory such as this 
and we should certainly expect to have to provide an adequate theory for the 
wake to make significant progress. However, we may speculate that a zero value 
for the circulation K would be desirable from the point of view of induced drag, 
since absence of circulation in a two-dimensional flow implies absence of trailing 
vortices when this flow is integrated across the vehicle. Such trailing vortices 
are a real and readily observable phenomenon for most automobiles (Potthoff 
1969), and their elimination, if possible, would no doubt be desirable. 

4. The small-gap theory for arbitrary bodies 
A general three-dimensional extension of the theory in § 2, including circula- 

tion, is of course exceedingly difficult. Widnall & Barrows (1970) have made 
some progress with three-dimensional wing-like vehicles, for which the Kutta 
condition enables determination of the circulation at each spanwise position and 
hence the strength of the trailing vortices. 

We provide here only the result for the case when such vortices are entirely 
absent, i.e. when the section-wise circulation is zero. In  this case the small-gap 
theory may be generalized directly; instead of the source-link pair of $ 2  we 
now have a distribution of sources and sinks around the ‘intersection’ curve C 
of the vehicle and the ground plane. 

That is, if $o again denotes the zero-order solution to the outer problem in the 
absence of a gap obtained by solving the ‘double-body’ problem formed by 
reflecting the vehicle in the ground plane y = 0,  then we write for the first-order 
outer solution 

$ + $o + m(s) G(s, y, z ;  Xb),  0, z(s)) ds = A. (4.1) 
C 

Here srn(s) is the source distribution, to be determined, while G(s, y, z ;  X ,  Y ,  2) 
is the Green’s function for the double body, i.e. the potential for a unit source at  
the point (X, Y ,  Z),  evaluated at  the point (z, y, z )  and satisfying aG/an = 0 on 
the body. The curve C is parametrized by 2 = X ( s ) ,  y = 0, z = Z(s), where s is 
arc length along C. 

For complicated body shapes the function G may be difficult to determine, 
even numerically. Fortunately, for the zero-order inner velocity (cf. (2.18)) a 
knowledge of G is not required. This is because, to leading order in E, we need only 
match the tangential velocity component along C with an inner under-vehicle 
flow. The normal component is then matched by the local source strength to give 
the first correction (cf. (2.17)) to the inner flow. 

Thus, if @ denotes the inner velocity potential, and the bottom of the vehicle 
is given by 

Y = W Z , Z ) ,  (4.2) 



490 E .  0. Tuck 

it is not difficult to show by stretching the y co-ordinate that Q, must satisfy 

a a@ a a@ 
ax ax az a2 
- H - + - H -  = O  inside C (4.3) 

On matching the tangential velocity (i.e. the potential Q, itself) to the outer 
solution across C, we have 

Q, = $o on C. (4.4) 

The boundary-value problem to solve (4.3) subject to (4.4) is a classical interior 
Dirichlet problem. In the special case of a flat-bottomed vehicle, H = constant, 
the differential operator in (4.3) reduces to the Laplacian in the (2, z )  plane. Once 
the potential CD has been determined, the source strength m(s) follows in terms 
of the derivative aQ,/an normal to C; in fact we have 

aQ,/an = m/4H, (4.5) 

since the flux eH aQ,/an emerging at  C from beneath the vehicle into the quarter 
plane [g > 0, (2, x )  outside C] must equal one quarter of the flux Em of the local 
source at  s = constant. 

The above arguments are intuitively based but have been confirmed by detailed 
asymptotic analysis for the case of a hemispherical vehicle and for a vehicle 
whose upper surface is half of a slender body of revolution of general shape. One 
feature of the zero-order solution for the hemispherical vehicle, common to all 
semi-ellipsoidal vehicles with flat bottoms, is that the Dirichlet problem (4.3), 
(4.4) has the solution 

for some constant V .  That is, to zero order in B the under-vehicle flow for flat- 
bottomed semi-ellipsoidal vehicles is simply a uniform stream V .  The boundary 
condition (4.4) implies that the value of V must equal the velocity of slip along 
the extreme side of the vehicle where C (an ellipse) is parallel to the 2 axis. This 
happens also to be the maximum above-vehicle flow velocity and, for example, 
V = 8U for spheres. 

In  the general case we cannot expect a uniform stream beneath the vehicle 
but the present model will stdl tend to produce a rather high velocity, com- 
parable with the accelerated flows at the side or top of the vehicle. Such high 
velocities would probably be substantially reduced in practice by viscous effects. 

Q, = Vx (4.6) 
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